Variational Transition-state Theory and Semiclassical Tunnelling Calculations with Interpolated Corrections : A New Approach to Interfacing Electronic Structure Theory and Dynamics for Organic Reactions
نویسندگان
چکیده
In variational transition-state theory (VTST) and semiclassical tunnelling calculations, especially those with semiempirical potential-energy surfaces, it is sometimes desirable to match the classical energies and vibration frequencies of some points (eg . the reactant, saddle point, product, van der Waals complex, ion-molecule complex) along the minimum-energy path (MEP) and in the reaction swath with high-level results, as this can improve the accuracy. This can be accomplished by adding a correction function to the calculated energies or frequencies. In this paper, we introduce a three-point or zero-order interpolated correction method which is based on the correction at three points, in particular the saddle point and two stationary points, one on each side of the MEP. We use the corrections at these points to build a correction function for the classical energy and for each vibrational mode frequency along the MEP. The function is calibrated such that the corrected result matches the accurate values at these stationary points. The functional forms to be used depend on the shape of the MEP under consideration and the relative correction values at those points. Similar treatments are applied to the determinant of the moment of inertia tensor along the reaction path and to the potential-energy function in non-adiabatic regions of corner-cutting tunnelling paths. Once parameters in the functional forms are determined, we then use the corrected energy, frequency and moments of inertia information together with other MEP and reaction swath data, as obtained directly from the potential-energy surface, to perform new VTST calculations. Details of the implementation are presented, and applications to reaction rate calculations of the OH + CH, -+ H, O + CH, and CF, + CD,H --+ CF,H + CD, reactions are included.
منابع مشابه
A direct ab inifio dynamics approach for calculating thermal rate constants using variational transition state theory and multidimensional semiclassical tunneling methods. An application to the CH,+H+GH,+H, reaction
We present a new methodology, called “direct ab initio dynamics, ” for calculations of thermal rate constants and related properties from first principles. The new method is based on full variational transition state theory plus multidimensional semiclassical tunneling transmission coefficients with the potential energy information to be calculated from an accurate level of ab initio electronic...
متن کاملHydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory
The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...
متن کاملTheRate: Program for ab initio direct dynamics calculations of thermal and vibrational-state-selected rate constants
Ž . ABSTRACT: We introduce TheRate THEoretical RATEs , a complete Ž . application program with a graphical user interface GUI for calculating rate constants from first principles. It is based on canonical variational transition-state Ž . theory CVT augmented by multidimensional semiclassical zero and small Ž . curvature tunneling approximations. Conventional transition-state theory TST with one...
متن کاملDirect ab initio dynamics studies of proton transfer in hydrogen-bond systems
We present systematic direct ab initio dynamics studies of proton transfer in hydrogen-bond systems using the tautomerization in gas phase formamidine and its monohydrated complex as model reactions. The thermal rate constants were calculated using a canonical variational transition state theory (CVT) with multidimensional semiclassical tunneling corrections within a small-curvature ground-stat...
متن کاملDirect ab Initio Dynamics Studies of the Hydrogen Abstraction Reactions of Hydrogen Atom with Fluoromethanes
A direct ab initio dynamics study on the gas-phase reactions of atomic hydrogen with different fluoromethanes has been carried out. The thermal rate constants were calculated using canonical variational transition state (CVT) theory augmented by multidimensional semiclassical zero and small curvature tunneling approximations. The potential energy surfaces for the reactions were calculated using...
متن کامل